Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spread-gram: A spreading-activation schema of network structural learning (1909.13581v1)

Published 30 Sep 2019 in cs.LG and stat.ML

Abstract: Network representation learning has exploded recently. However, existing studies usually reconstruct networks as sequences or matrices, which may cause information bias or sparsity problem during model training. Inspired by a cognitive model of human memory, we propose a network representation learning scheme. In this scheme, we learn node embeddings by adjusting the proximity of nodes traversing the spreading structure of the network. Our proposed method shows a significant improvement in multiple analysis tasks based on various real-world networks, ranging from semantic networks to protein interaction networks, international trade networks, human behavior networks, etc. In particular, our model can effectively discover the hierarchical structures in networks. The well-organized model training speeds up the convergence to only a small number of iterations, and the training time is linear with respect to the edge numbers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jie Bai (12 papers)
  2. Linjing Li (15 papers)
  3. Daniel Zeng (18 papers)