Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Feature Learning of Multi-Network Topology for Node Classification (1809.02394v1)

Published 7 Sep 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Networks are ubiquitous structure that describes complex relationships between different entities in the real world. As a critical component of prediction task over nodes in networks, learning the feature representation of nodes has become one of the most active areas recently. Network Embedding, aiming to learn non-linear and low-dimensional feature representation based on network topology, has been proved to be helpful on tasks of network analysis, especially node classification. For many real-world systems, multiple types of relations are naturally represented by multiple networks. However, existing network embedding methods mainly focus on single network embedding and neglect the information shared among different networks. In this paper, we propose a novel multiple network embedding method based on semisupervised autoencoder, named DeepMNE, which captures complex topological structures of multi-networks and takes the correlation among multi-networks into account. We evaluate DeepMNE on the task of node classification with two real-world datasets. The experimental results demonstrate the superior performance of our method over four state-of-the-art algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hansheng Xue (7 papers)
  2. Jiajie Peng (12 papers)
  3. Xuequn Shang (11 papers)
Citations (2)