Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stratified Space Learning: Reconstructing Embedded Graphs (1909.12474v1)

Published 27 Sep 2019 in math.AT, cs.CG, and math.GT

Abstract: Many data-rich industries are interested in the efficient discovery and modelling of structures underlying large data sets, as it allows for the fast triage and dimension reduction of large volumes of data embedded in high dimensional spaces. The modelling of these underlying structures is also beneficial for the creation of simulated data that better represents real data. In particular, for systems testing in cases where the use of real data streams might prove impractical or otherwise undesirable. We seek to discover and model the structure by combining methods from topological data analysis with numerical modelling. As a first step in combining these two areas, we examine the recovery of the abstract graph $G$ structure, and model a linear embedding $|G|$ given only a noisy point cloud sample $X$ of $|G|$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.