Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Lossless Compression of Graphical Data (1909.09844v1)

Published 21 Sep 2019 in math.PR, cs.IT, and math.IT

Abstract: Graphical data is comprised of a graph with marks on its edges and vertices. The mark indicates the value of some attribute associated to the respective edge or vertex. Examples of such data arise in social networks, molecular and systems biology, and web graphs, as well as in several other application areas. Our goal is to design schemes that can efficiently compress such graphical data without making assumptions about its stochastic properties. Namely, we wish to develop a universal compression algorithm for graphical data sources. To formalize this goal, we employ the framework of local weak convergence, also called the objective method, which provides a technique to think of a marked graph as a kind of stationary stochastic processes, stationary with respect to movement between vertices of the graph. In recent work, we have generalized a notion of entropy for unmarked graphs in this framework, due to Bordenave and Caputo, to the case of marked graphs. We use this notion to evaluate the efficiency of a compression scheme. The lossless compression scheme we propose in this paper is then proved to be universally optimal in a precise technical sense. It is also capable of performing local data queries in the compressed form.

Citations (24)

Summary

We haven't generated a summary for this paper yet.