Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Compression of Graphical Data (1802.07446v3)

Published 21 Feb 2018 in cs.IT and math.IT

Abstract: In contrast to time series, graphical data is data indexed by the vertices and edges of a graph. Modern applications such as the internet, social networks, genomics and proteomics generate graphical data, often at large scale. The large scale argues for the need to compress such data for storage and subsequent processing. Since this data might have several components available in different locations, it is also important to study distributed compression of graphical data. In this paper, we derive a rate region for this problem which is a counterpart of the Slepian-Wolf theorem. We characterize the rate region when the statistical description of the distributed graphical data can be modeled as being one of two types - as a member of a sequence of marked sparse Erdos-Renyi ensembles or as a member of a sequence of marked configuration model ensembles. Our results are in terms of a generalization of the notion of entropy introduced by Bordenave and Caputo in the study of local weak limits of sparse graphs. Furthermore, we give a generalization of this result for Erdos-Renyi and configuration model ensembles with more than two sources.

Citations (6)

Summary

We haven't generated a summary for this paper yet.