Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Google vs IBM: A Constraint Solving Challenge on the Job-Shop Scheduling Problem (1909.08247v1)

Published 18 Sep 2019 in cs.AI and cs.PF

Abstract: The job-shop scheduling is one of the most studied optimization problems from the dawn of computer era to the present day. Its combinatorial nature makes it easily expressible as a constraint satisfaction problem. In this paper, we compare the performance of two constraint solvers on the job-shop scheduling problem. The solvers in question are: OR-Tools, an open-source solver developed by Google and winner of the last MiniZinc Challenge, and CP Optimizer, a proprietary IBM constraint solver targeted at industrial scheduling problems. The comparison is based on the goodness of the solutions found and the time required to solve the problem instances. First, we target the classic benchmarks from the literature, then we carry out the comparison on a benchmark that was created with known optimal solution, with size comparable to real-world industrial problems.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.