Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Constraint Programming via Supervised Learning for Job Shop Scheduling (2211.14492v2)

Published 26 Nov 2022 in cs.AI

Abstract: Constraint programming (CP) is a powerful technique for solving constraint satisfaction and optimization problems. In CP solvers, the variable ordering strategy used to select which variable to explore first in the solving process has a significant impact on solver effectiveness. To address this issue, we propose a novel variable ordering strategy based on supervised learning, which we evaluate in the context of job shop scheduling problems. Our learning-based methods predict the optimal solution of a problem instance and use the predicted solution to order variables for CP solvers. \added[]{Unlike traditional variable ordering methods, our methods can learn from the characteristics of each problem instance and customize the variable ordering strategy accordingly, leading to improved solver performance.} Our experiments demonstrate that training machine learning models is highly efficient and can achieve high accuracy. Furthermore, our learned variable ordering methods perform competitively when compared to four existing methods. Finally, we demonstrate that hybridising the machine learning-based variable ordering methods with traditional domain-based methods is beneficial.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yuan Sun (117 papers)
  2. Su Nguyen (6 papers)
  3. Dhananjay Thiruvady (14 papers)
  4. Xiaodong Li (146 papers)
  5. Andreas T. Ernst (8 papers)
  6. Uwe Aickelin (249 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.