Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conformal Prediction based Spectral Clustering (1909.07594v1)

Published 17 Sep 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Spectral Clustering(SC) is a prominent data clustering technique of recent times which has attracted much attention from researchers. It is a highly data-driven method and makes no strict assumptions on the structure of the data to be clustered. One of the central pieces of spectral clustering is the construction of an affinity matrix based on a similarity measure between data points. The way the similarity measure is defined between data points has a direct impact on the performance of the SC technique. Several attempts have been made in the direction of strengthening the pairwise similarity measure to enhance the spectral clustering. In this work, we have defined a novel affinity measure by employing the concept of non-conformity used in Conformal Prediction(CP) framework. The non-conformity based affinity captures the relationship between neighborhoods of data points and has the power to generalize the notion of contextual similarity. We have shown that this formulation of affinity measure gives good results and compares well with the state of the art methods.

Summary

We haven't generated a summary for this paper yet.