Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Deep Affine-Invariant Shape Learning for Brain MR Image Segmentation (1909.06629v2)

Published 14 Sep 2019 in eess.IV and cs.CV

Abstract: Recent advancements in medical image segmentation techniques have achieved compelling results. However, most of the widely used approaches do not take into account any prior knowledge about the shape of the biomedical structures being segmented. More recently, some works have presented approaches to incorporate shape information. However, many of them are indeed introducing more parameters to the segmentation network to learn the general features, which any segmentation network is able learn, instead of specifically shape features. In this paper, we present a novel approach that seamlessly integrates the shape information into the segmentation network. Experiments on human brain MRI segmentation demonstrate that our approach can achieve a lower Hausdorff distance and higher Dice coefficient than the state-of-the-art approaches.

Citations (7)

Summary

We haven't generated a summary for this paper yet.