Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Star Shape Prior in Fully Convolutional Networks for Skin Lesion Segmentation (1806.08437v1)

Published 21 Jun 2018 in cs.CV

Abstract: Semantic segmentation is an important preliminary step towards automatic medical image interpretation. Recently deep convolutional neural networks have become the first choice for the task of pixel-wise class prediction. While incorporating prior knowledge about the structure of target objects has proven effective in traditional energy-based segmentation approaches, there has not been a clear way for encoding prior knowledge into deep learning frameworks. In this work, we propose a new loss term that encodes the star shape prior into the loss function of an end-to-end trainable fully convolutional network (FCN) framework. We penalize non-star shape segments in FCN prediction maps to guarantee a global structure in segmentation results. Our experiments demonstrate the advantage of regularizing FCN parameters by the star shape prior and our results on the ISBI 2017 skin segmentation challenge data set achieve the first rank in the segmentation task among $21$ participating teams.

Citations (115)

Summary

We haven't generated a summary for this paper yet.