Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 72 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Harmonic Forms, Price Inequalities, and Benjamini-Schramm Convergence (1909.05634v3)

Published 12 Sep 2019 in math.DG and math.GT

Abstract: We study Betti numbers of sequences of Riemannian manifolds which Benjamini-Schramm converge to their universal covers. Using the Price inequalities we developed elsewhere, we derive two distinct convergence results. First, under a negative Ricci curvature assumption and no assumption on sign of the sectional curvature, we have a convergence result for weakly uniform discrete sequences of closed Riemannian manifolds. In the negative sectional curvature case, we are able to remove the weakly uniform discreteness assumption. This is achieved by combining a refined Thick-Thin decomposition together with a Moser iteration argument for harmonic forms on manifolds with boundary.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.