Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Numerical Method for the Parametrization of Stable and Unstable Manifolds of Microscopic Simulators (1909.03241v1)

Published 7 Sep 2019 in math.DS, cs.NA, and math.NA

Abstract: We address a numerical methodology for the computation of coarse-grained stable and unstable manifolds of saddle equilibria/stationary states of multiscale/stochastic systems for which a "good" macroscopic description in the form of Ordinary (ODEs) and/or Partial differential equations (PDEs) does not explicitly/ analytically exists in a closed form. Thus, the assumption is that we have a detailed microscopic simulator of a complex system in the form of Monte-Carlo, Brownian dynamics, Agent-based models e.t.c. (or a black-box large-scale discrete time simulator) but due to the inherent complexity of the problem, we don't have explicitly an accurate model in the form of ODEs or PDEs. Our numerical scheme is a three-tier one including: (a) the "on demand" detection of the coarse-grained saddle equilibrium, (b) its coarse-grained stability analysis, and (c) the parametrization of the semi-local invariant stable and unstable manifolds by the numerical solution of the homological/functional equations for the coefficients of the truncated series approximation of the manifolds.

Summary

We haven't generated a summary for this paper yet.