Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling pathwise uncertainty of Stochastic Differential Equations samplers via Probabilistic Numerics (2401.03338v1)

Published 23 Nov 2023 in math.NA, cs.NA, stat.CO, and stat.ME

Abstract: Probabilistic ordinary differential equation (ODE) solvers have been introduced over the past decade as uncertainty-aware numerical integrators. They typically proceed by assuming a functional prior to the ODE solution, which is then queried on a grid to form a posterior distribution over the ODE solution. As the queries span the integration interval, the approximate posterior solution then converges to the true deterministic one. Gaussian ODE filters, in particular, have enjoyed a lot of attention due to their computational efficiency, the simplicity of their implementation, as well as their provable fast convergence rates. In this article, we extend the methodology to stochastic differential equations (SDEs) and propose a probabilistic simulator for SDEs. Our approach involves transforming the SDE into a sequence of random ODEs using piecewise differentiable approximations of the Brownian motion. We then apply probabilistic ODE solvers to the individual ODEs, resulting in a pathwise probabilistic solution to the SDE\@. We establish worst-case strong $1.5$ local and $1.0$ global convergence orders for a specific instance of our method. We further show how we can marginalise the Brownian approximations, by incorporating its coefficients as part of the prior ODE model, allowing for computing exact transition densities under our model. Finally, we numerically validate the theoretical findings, showcasing reasonable weak convergence properties in the marginalised version.

Summary

We haven't generated a summary for this paper yet.