Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

ILP-M Conv: Optimize Convolution Algorithm for Single-Image Convolution Neural Network Inference on Mobile GPUs (1909.02765v2)

Published 6 Sep 2019 in cs.DC, cs.CV, and cs.PF

Abstract: Convolution neural networks are widely used for mobile applications. However, GPU convolution algorithms are designed for mini-batch neural network training, the single-image convolution neural network inference algorithm on mobile GPUs is not well-studied. After discussing the usage difference and examining the existing convolution algorithms, we proposed the HNTMP convolution algorithm. The HNTMP convolution algorithm achieves $14.6 \times$ speedup than the most popular \textit{im2col} convolution algorithm, and $2.30 \times$ speedup than the fastest existing convolution algorithm (direct convolution) as far as we know.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)