Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solve fraud detection problem by using graph based learning methods (1908.11708v1)

Published 29 Aug 2019 in stat.ML and cs.LG

Abstract: The credit cards' fraud transactions detection is the important problem in machine learning field. To detect the credit cards's fraud transactions help reduce the significant loss of the credit cards' holders and the banks. To detect the credit cards' fraud transactions, data scientists normally employ the unsupervised learning techniques and supervised learning techniques. In this paper, we employ the graph p-Laplacian based semi-supervised learning methods combined with the undersampling techniques such as Cluster Centroids to solve the credit cards' fraud transactions detection problem. Experimental results show that the graph p-Laplacian semi-supervised learning methods outperform the current state of the art graph Laplacian based semi-supervised learning method (p=2).

Citations (4)

Summary

We haven't generated a summary for this paper yet.