Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Exploiting Global Camera Network Constraints for Unsupervised Video Person Re-identification (1908.10486v3)

Published 27 Aug 2019 in cs.CV

Abstract: Many unsupervised approaches have been proposed recently for the video-based re-identification problem since annotations of samples across cameras are time-consuming. However, higher-order relationships across the entire camera network are ignored by these methods, leading to contradictory outputs when matching results from different camera pairs are combined. In this paper, we address the problem of unsupervised video-based re-identification by proposing a consistent cross-view matching (CCM) framework, in which global camera network constraints are exploited to guarantee the matched pairs are with consistency. Specifically, we first propose to utilize the first neighbor of each sample to discover relations among samples and find the groups in each camera. Additionally, a cross-view matching strategy followed by global camera network constraints is proposed to explore the matching relationships across the entire camera network. Finally, we learn metric models for camera pairs progressively by alternatively mining consistent cross-view matching pairs and updating metric models using these obtained matches. Rigorous experiments on two widely-used benchmarks for video re-identification demonstrate the superiority of the proposed method over current state-of-the-art unsupervised methods; for example, on the MARS dataset, our method achieves an improvement of 4.2\% over unsupervised methods, and even 2.5\% over one-shot supervision-based methods for rank-1 accuracy.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube