Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An analytic version of the Langlands correspondence for complex curves (1908.09677v4)

Published 26 Aug 2019 in math.AG, hep-th, math.AP, math.FA, and math.RT

Abstract: The Langlands correspondence for complex curves is traditionally formulated in terms of sheaves rather than functions. Recently, Langlands asked whether it is possible to construct a function-theoretic version. In this paper we use the algebra of commuting global differential operators (quantum Hitchin Hamiltonians and their complex conjugates) on the moduli space of G-bundles of a complex algebraic curve to formulate a function-theoretic correspondence. We conjecture the existence of a canonical self-adjoint extension of the symmetric part of this algebra acting on an appropriate Hilbert space and link its spectrum with the set of opers for the Langlands dual group of G satisfying a certain reality condition, as predicted earlier by Teschner. We prove this conjecture for G=GL(1) and in the simplest non-abelian case.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube