Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Controllable Dual Skew Divergence Loss for Neural Machine Translation (1908.08399v2)

Published 22 Aug 2019 in cs.CL

Abstract: In sequence prediction tasks like neural machine translation, training with cross-entropy loss often leads to models that overgeneralize and plunge into local optima. In this paper, we propose an extended loss function called \emph{dual skew divergence} (DSD) that integrates two symmetric terms on KL divergences with a balanced weight. We empirically discovered that such a balanced weight plays a crucial role in applying the proposed DSD loss into deep models. Thus we eventually develop a controllable DSD loss for general-purpose scenarios. Our experiments indicate that switching to the DSD loss after the convergence of ML training helps models escape local optima and stimulates stable performance improvements. Our evaluations on the WMT 2014 English-German and English-French translation tasks demonstrate that the proposed loss as a general and convenient mean for NMT training indeed brings performance improvement in comparison to strong baselines.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.