Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

F-theory models with $U(1)\times \mathbb{Z}_2,\, \mathbb{Z}_4$ and transitions in discrete gauge groups (1908.06621v3)

Published 19 Aug 2019 in hep-th

Abstract: We examine the proposal in the previous paper to resolve the puzzle in transitions in discrete gauge groups. We focus on a four-section geometry to test the proposal. We observed that a discrete $\mathbb{Z}_2$ gauge group enlarges and $U(1)$ also forms in F-theory along any bisection geometries locus in the four-section geometry built as the complete intersections of two quadrics in $\mathbb{P}3$ fibered over any base. Furthermore, we demonstrate that giving vacuum expectation values to hypermultiplets breaks the enlarged $U(1)\times \mathbb{Z}_2$ gauge group down to a discrete $\mathbb{Z}_4$ gauge group via Higgsing. We thus confirmed that the proposal in the previous paper is consistent when a four-section splits into a pair of bisections in the four-section geometry. This analysis may be useful for understanding the Higgsing processes occurring in the transitions in discrete gauge groups in six-dimensional F-theory models. We also discuss the construction of a family of six-dimensional F-theory models in which $U(1)\times\mathbb{Z}_4$ forms.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)