Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of Conditional Average Treatment Effects with High-Dimensional Data (1908.02399v5)

Published 6 Aug 2019 in econ.EM

Abstract: Given the unconfoundedness assumption, we propose new nonparametric estimators for the reduced dimensional conditional average treatment effect (CATE) function. In the first stage, the nuisance functions necessary for identifying CATE are estimated by machine learning methods, allowing the number of covariates to be comparable to or larger than the sample size. The second stage consists of a low-dimensional local linear regression, reducing CATE to a function of the covariate(s) of interest. We consider two variants of the estimator depending on whether the nuisance functions are estimated over the full sample or over a hold-out sample. Building on Belloni at al. (2017) and Chernozhukov et al. (2018), we derive functional limit theory for the estimators and provide an easy-to-implement procedure for uniform inference based on the multiplier bootstrap. The empirical application revisits the effect of maternal smoking on a baby's birth weight as a function of the mother's age.

Summary

We haven't generated a summary for this paper yet.