Constructing cospectral signed graphs (1908.02220v1)
Abstract: A well--known fact in Spectral Graph Theory is the existence of pairs of isospectral nonisomorphic graphs (known as PINGS). The work of A.J. Schwenk (in 1973) and of C. Godsil and B. McKay (in 1982) shed some light on the explanation of the presence of isospectral graphs, and they gave routines to construct PINGS. Here, we consider the Godsil-McKay--type routines developed for graphs, whose adjacency matrices are $(0,1)$-matrices, to the level of signed graphs, whose adjacency matrices allow the presence of $-1$'s. We show that, with suitable adaption, such routines can be successfully ported to signed graphs, and we can build pairs of cospectral switching nonisomorphic signed graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.