Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Full-semiparametric-likelihood-based inference for non-ignorable missing data (1908.01260v1)

Published 4 Aug 2019 in stat.ME, math.ST, and stat.TH

Abstract: During the past few decades, missing-data problems have been studied extensively, with a focus on the ignorable missing case, where the missing probability depends only on observable quantities. By contrast, research into non-ignorable missing data problems is quite limited. The main difficulty in solving such problems is that the missing probability and the regression likelihood function are tangled together in the likelihood presentation, and the model parameters may not be identifiable even under strong parametric model assumptions. In this paper we discuss a semiparametric model for non-ignorable missing data and propose a maximum full semiparametric likelihood estimation method, which is an efficient combination of the parametric conditional likelihood and the marginal nonparametric biased sampling likelihood. The extra marginal likelihood contribution can not only produce efficiency gain but also identify the underlying model parameters without additional assumptions. We further show that the proposed estimators for the underlying parameters and the response mean are semiparametrically efficient. Extensive simulations and a real data analysis demonstrate the advantage of the proposed method over competing methods.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.