Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-optimal sampling strategies for multivariate function approximation on general domains (1908.01249v2)

Published 4 Aug 2019 in math.NA and cs.NA

Abstract: In this paper, we address the problem of approximating a multivariate function defined on a general domain in $d$ dimensions from sample points. We consider weighted least-squares approximation in an arbitrary finite-dimensional space $P$ from independent random samples taken according to a suitable measure. In general, least-squares approximations can be inaccurate and ill-conditioned when the number of sample points $M$ is close to $N = \dim(P)$. To counteract this, we introduce a novel method for sampling in general domains which leads to provably accurate and well-conditioned approximations. The resulting sampling measure is discrete, and therefore straightforward to sample from. Our main result shows near-optimal sample complexity for this procedure; specifically, $M = \mathcal{O}(N \log(N))$ samples suffice for a well-conditioned and accurate approximation. Numerical experiments on polynomial approximation in general domains confirm the benefits of this method over standard sampling.

Citations (22)

Summary

We haven't generated a summary for this paper yet.