Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized algorithms for the approximate matrix polynomial GCD of reducing data uncertainties with application to MIMO system and control (1907.13101v4)

Published 30 Jul 2019 in math.NA and cs.NA

Abstract: Computation of (approximate) polynomials common factors is an important problem in several fields of science, like control theory and signal processing. While the problem has been widely studied for scalar polynomials, the scientific literature in the framework of matrix polynomials seems to be limited to the problem of exact greatest common divisors computation. In this paper, we generalize two algorithms from scalar to matrix polynomials. The first one is fast and simple. The second one is more accurate but computationally more expensive. We test the performances of the two algorithms and observe similar behavior to the one in the scalar case. Finally we describe an application to multi-input multi-output linear time-invariant dynamical systems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.