Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate GCD in Lagrange bases (2103.13949v1)

Published 25 Mar 2021 in math.NA and cs.NA

Abstract: For a pair of polynomials with real or complex coefficients, given in any particular basis, the problem of finding their GCD is known to be ill-posed. An answer is still desired for many applications, however. Hence, looking for a GCD of so-called approximate polynomials where this term explicitly denotes small uncertainties in the coefficients has received significant attention in the field of hybrid symbolic-numeric computation. In this paper we give an algorithm, based on one of Victor Ya. Pan, to find an approximate GCD for a pair of approximate polynomials given in a Lagrange basis. More precisely, we suppose that these polynomials are given by their approximate values at distinct known points. We first find each of their roots by using a Lagrange basis companion matrix for each polynomial, cluster the roots of each polynomial to identify multiple roots, and then "marry" the two polynomials to find their GCD. At no point do we change to the monomial basis, thus preserving the good conditioning properties of the original Lagrange basis. We discuss advantages and drawbacks of this method. The computational cost is dominated by the rootfinding step; unless special-purpose eigenvalue algorithms are used, the cost is cubic in the degrees of the polynomials. In principle, this cost could be reduced but we do not do so here.

Citations (1)

Summary

We haven't generated a summary for this paper yet.