Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

A remark on matrix product operator algebras, anyons and subfactors (1907.12169v2)

Published 29 Jul 2019 in cond-mat.str-el, math-ph, math.MP, math.OA, and math.QA

Abstract: We show that the mathematical structures in a recent work of Bultinck-Mariena-Williamson-Sahinoglu-Haegemana-Verstraete are the same as those of flat symmetric bi-unitary connections and the tube algebra in subfactor theory. More specifically, a system of flat symmetric bi-unitary connections arising from a subfactor with finite index and finite depth satisfies all their requirements for tensors and the tube algebra for such a subfactor and the anyon algebra for such tensors are isomorphic up to the normalization constants. Furthermore, the matrix product operator algebras arising from tensors corresponding to possibly non-flat symmetric bi-unitary connections are isomorphic to those arising from flat symmetric bi-unitary connections for subfactors.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)