Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training products of expert capsules with mixing by dynamic routing (1907.11643v1)

Published 26 Jul 2019 in cs.LG, cs.NE, and stat.ML

Abstract: This study develops an unsupervised learning algorithm for products of expert capsules with dynamic routing. Analogous to binary-valued neurons in Restricted Boltzmann Machines, the magnitude of a squashed capsule firing takes values between zero and one, representing the probability of the capsule being on. This analogy motivates the design of an energy function for capsule networks. In order to have an efficient sampling procedure where hidden layer nodes are not connected, the energy function is made consistent with dynamic routing in the sense of the probability of a capsule firing, and inference on the capsule network is computed with the dynamic routing between capsules procedure. In order to optimize the log-likelihood of the visible layer capsules, the gradient is found in terms of this energy function. The developed unsupervised learning algorithm is used to train a capsule network on standard vision datasets, and is able to generate realistic looking images from its learned distribution.

Summary

We haven't generated a summary for this paper yet.