Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Eigenvalues for the Minors of Wigner Matrices (1907.10214v1)

Published 24 Jul 2019 in math.PR

Abstract: The eigenvalues for the minors of real symmetric ($\beta=1$) and complex Hermitian ($\beta=2$) Wigner matrices form the Wigner corner process, which is a multilevel interlacing particle system. In this paper, we study the microscopic scaling limit of the Wigner corner process both near the spectral edge and in the bulk, and prove they are universal. We show: (i) Near the spectral edge, the corner process exhibit a decoupling phenomenon, as first observed in [24]. Individual extreme particles have Tracy-Widom${\beta}$ distribution; the spacings between the extremal particles on adjacent levels converge to independent Gamma distributions in a much smaller scale. (ii) In the bulk, the microscopic scaling limit of the Wigner corner process is given by the bead process for general Sine$\beta$ process, as constructed recently in [34].

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube