Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Asymptotically exact unweighted particle filter for manifold-valued hidden states and point process observations (1907.10143v3)

Published 23 Jul 2019 in math.OC and math.PR

Abstract: The filtering of a Markov diffusion process on a manifold from counting process observations leads to `large' changes in the conditional distribution upon an observed event, corresponding to a multiplication of the density by the intensity function of the observation process. If that distribution is represented by unweighted samples or particles, they need to be jointly transformed such that they sample from the modified distribution. In previous work, this transformation has been approximated by a translation of all the particles by a common vector. However, such an operation is ill-defined on a manifold, and on a vector space, a constant gain can lead to a wrong estimate of the uncertainty over the hidden state. Here, taking inspiration from the feedback particle filter (FPF), we derive an asymptotically exact filter (called ppFPF) for point process observations, whose particles evolve according to intrinsic (i.e. parametrization-invariant) dynamics that are composed of the dynamics of the hidden state plus additional control terms. While not sharing the gain-times-error structure of the FPF, the optimal control terms are expressed as solutions to partial differential equations analogous to the weighted Poisson equation for the gain of the FPF. The proposed filter can therefore make use of existing approximation algorithms for solutions of weighted Poisson equations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.