Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoding the Style and Bias of Song Lyrics (1907.07818v1)

Published 17 Jul 2019 in cs.IR and cs.CL

Abstract: The central idea of this paper is to gain a deeper understanding of song lyrics computationally. We focus on two aspects: style and biases of song lyrics. All prior works to understand these two aspects are limited to manual analysis of a small corpus of song lyrics. In contrast, we analyzed more than half a million songs spread over five decades. We characterize the lyrics style in terms of vocabulary, length, repetitiveness, speed, and readability. We have observed that the style of popular songs significantly differs from other songs. We have used distributed representation methods and WEAT test to measure various gender and racial biases in the song lyrics. We have observed that biases in song lyrics correlate with prior results on human subjects. This correlation indicates that song lyrics reflect the biases that exist in society. Increasing consumption of music and the effect of lyrics on human emotions makes this analysis important.

Citations (6)

Summary

We haven't generated a summary for this paper yet.