Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Competing Against Equilibria in Zero-Sum Games with Evolving Payoffs (1907.07723v1)

Published 17 Jul 2019 in cs.LG and stat.ML

Abstract: We study the problem of repeated play in a zero-sum game in which the payoff matrix may change, in a possibly adversarial fashion, on each round; we call these Online Matrix Games. Finding the Nash Equilibrium (NE) of a two player zero-sum game is core to many problems in statistics, optimization, and economics, and for a fixed game matrix this can be easily reduced to solving a linear program. But when the payoff matrix evolves over time our goal is to find a sequential algorithm that can compete with, in a certain sense, the NE of the long-term-averaged payoff matrix. We design an algorithm with small NE regret--that is, we ensure that the long-term payoff of both players is close to minimax optimum in hindsight. Our algorithm achieves near-optimal dependence with respect to the number of rounds and depends poly-logarithmically on the number of available actions of the players. Additionally, we show that the naive reduction, where each player simply minimizes its own regret, fails to achieve the stated objective regardless of which algorithm is used. We also consider the so-called bandit setting, where the feedback is significantly limited, and we provide an algorithm with small NE regret using one-point estimates of each payoff matrix.

Citations (6)

Summary

We haven't generated a summary for this paper yet.