Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting No-Regret Algorithms in System Design (2007.11172v3)

Published 22 Jul 2020 in cs.GT and cs.AI

Abstract: We investigate a repeated two-player zero-sum game setting where the column player is also a designer of the system, and has full control on the design of the payoff matrix. In addition, the row player uses a no-regret algorithm to efficiently learn how to adapt their strategy to the column player's behaviour over time in order to achieve good total payoff. The goal of the column player is to guide her opponent to pick a mixed strategy which is favourable for the system designer. Therefore, she needs to: (i) design an appropriate payoff matrix $A$ whose unique minimax solution contains the desired mixed strategy of the row player; and (ii) strategically interact with the row player during a sequence of plays in order to guide her opponent to converge to that desired behaviour. To design such a payoff matrix, we propose a novel solution that provably has a unique minimax solution with the desired behaviour. We also investigate a relaxation of this problem where uniqueness is not required, but all the minimax solutions have the same mixed strategy for the row player. Finally, we propose a new game playing algorithm for the system designer and prove that it can guide the row player, who may play a \emph{stable} no-regret algorithm, to converge to a minimax solution.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com