Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Geometric Convergence of Distributed Gradient Play in Games with Unconstrained Action Sets (1907.07144v1)

Published 15 Jul 2019 in math.OC

Abstract: We provide a distributed algorithm to learn a Nash equilibrium in a class of non-cooperative games with strongly monotone mappings and unconstrained action sets. Each player has access to her own smooth local cost function and can communicate to her neighbors in some undirected graph. We consider a distributed communication-based gradient algorithm. For this procedure, we prove geometric convergence to a Nash equilibrium. In contrast to our previous works [15], [16], where the proposed algorithms required two parameters to be set up and the analysis was based on a so called augmented game mapping, the procedure in this work corresponds to a standard distributed gradient play and, thus, only one constant step size parameter needs to be chosen appropriately to guarantee fast convergence to a game solution. Moreover, we provide a rigorous comparison between the convergence rate of the proposed distributed gradient play and the rate of the GRANE algorithm presented in [15]. It allows us to demonstrate that the distributed gradient play outperforms the GRANE in terms of convergence speed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.