Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metamorphic Testing of a Deep Learning based Forecaster (1907.06632v1)

Published 13 Jul 2019 in cs.LG and cs.SE

Abstract: In this paper, we present the Metamorphic Testing of an in-use deep learning based forecasting application. The application looks at the past data of system characteristics (e.g. `memory allocation') to predict outages in the future. We focus on two statistical / machine learning based components - a) detection of co-relation between system characteristics and b) estimating the future value of a system characteristic using an LSTM (a deep learning architecture). In total, 19 Metamorphic Relations have been developed and we provide proofs & algorithms where applicable. We evaluated our method through two settings. In the first, we executed the relations on the actual application and uncovered 8 issues not known before. Second, we generated hypothetical bugs, through Mutation Testing, on a reference implementation of the LSTM based forecaster and found that 65.9% of the bugs were caught through the relations.

Citations (9)

Summary

We haven't generated a summary for this paper yet.