Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Naver Labs Europe's Systems for the WMT19 Machine Translation Robustness Task (1907.06488v1)

Published 15 Jul 2019 in cs.CL

Abstract: This paper describes the systems that we submitted to the WMT19 Machine Translation robustness task. This task aims to improve MT's robustness to noise found on social media, like informal language, spelling mistakes and other orthographic variations. The organizers provide parallel data extracted from a social media website in two language pairs: French-English and Japanese-English (in both translation directions). The goal is to obtain the best scores on unseen test sets from the same source, according to automatic metrics (BLEU) and human evaluation. We proposed one single and one ensemble system for each translation direction. Our ensemble models ranked first in all language pairs, according to BLEU evaluation. We discuss the pre-processing choices that we made, and present our solutions for robustness to noise and domain adaptation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ioan Calapodescu (12 papers)
  2. Claude Roux (4 papers)
  3. Alexandre Bérard (10 papers)
Citations (58)