Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Gaussian Mixture Fusion through Unified Quotient Approximations (1907.04008v1)

Published 9 Jul 2019 in eess.SP, cs.RO, cs.SY, eess.SY, and stat.CO

Abstract: This work examines the problem of using finite Gaussian mixtures (GM) probability density functions in recursive Bayesian peer-to-peer decentralized data fusion (DDF). It is shown that algorithms for both exact and approximate GM DDF lead to the same problem of finding a suitable GM approximation to a posterior fusion pdf resulting from the division of a naive Bayes' fusion GM (representing direct combination of possibly dependent information sources) by another non-Gaussian pdf (representing removal of either the actual or estimatedcommon information' between the information sources). The resulting quotient pdf for general GM fusion is naturally a mixture pdf, although the fused mixands are non-Gaussian and are not analytically tractable for recursive Bayesian updates. Parallelizable importance sampling algorithms for both direct local approximation and indirect global approximation of the quotient mixture are developed to find tractable GM approximations to the non-Gaussian `sum of quotients' mixtures. Practical application examples for multi-platform static target search and maneuverable range-based target tracking demonstrate the higher fidelity of the resulting approximations compared to existing GM DDF techniques, as well as their favorable computational features.

Citations (1)

Summary

We haven't generated a summary for this paper yet.