Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Generalized Bayesian Data Fusion with Complex Models in Large Scale Networks (1308.3015v1)

Published 14 Aug 2013 in cs.RO, cs.SY, stat.CO, and stat.ME

Abstract: Recent advances in communications, mobile computing, and artificial intelligence have greatly expanded the application space of intelligent distributed sensor networks. This in turn motivates the development of generalized Bayesian decentralized data fusion (DDF) algorithms for robust and efficient information sharing among autonomous agents using probabilistic belief models. However, DDF is significantly challenging to implement for general real-world applications requiring the use of dynamic/ad hoc network topologies and complex belief models, such as Gaussian mixtures or hybrid Bayesian networks. To tackle these issues, we first discuss some new key mathematical insights about exact DDF and conservative approximations to DDF. These insights are then used to develop novel generalized DDF algorithms for complex beliefs based on mixture pdfs and conditional factors. Numerical examples motivated by multi-robot target search demonstrate that our methods lead to significantly better fusion results, and thus have great potential to enhance distributed intelligent reasoning in sensor networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.