Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The emergence of informative higher scales in complex networks (1907.03902v2)

Published 8 Jul 2019 in physics.soc-ph and cs.SI

Abstract: The connectivity of a network contains information about the relationships between nodes, which can denote interactions, associations, or dependencies. We show that this information can be analyzed by measuring the uncertainty (and certainty) contained in paths along nodes and links in a network. Specifically, we derive from first principles a measure known as effective information and describe its behavior in common network models. Networks with higher effective information contain more information in the relationships between nodes. We show how subgraphs of nodes can be grouped into macro-nodes, reducing the size of a network while increasing its effective information (a phenomenon known as causal emergence). We find that informative higher scales are common in simulated and real networks across biological, social, informational, and technological domains. These results show that the emergence of higher scales in networks can be directly assessed and that these higher scales offer a way to create certainty out of uncertainty.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.