Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

Multi-Scale Vector Quantization with Reconstruction Trees (1907.03875v2)

Published 8 Jul 2019 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We propose and study a multi-scale approach to vector quantization. We develop an algorithm, dubbed reconstruction trees, inspired by decision trees. Here the objective is parsimonious reconstruction of unsupervised data, rather than classification. Contrasted to more standard vector quantization methods, such as K-means, the proposed approach leverages a family of given partitions, to quickly explore the data in a coarse to fine-- multi-scale-- fashion. Our main technical contribution is an analysis of the expected distortion achieved by the proposed algorithm, when the data are assumed to be sampled from a fixed unknown distribution. In this context, we derive both asymptotic and finite sample results under suitable regularity assumptions on the distribution. As a special case, we consider the setting where the data generating distribution is supported on a compact Riemannian sub-manifold. Tools from differential geometry and concentration of measure are useful in our analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube