Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization (1907.03793v2)

Published 8 Jul 2019 in math.OC, cs.LG, and stat.ML

Abstract: We introduce a new approach to develop stochastic optimization algorithms for a class of stochastic composite and possibly nonconvex optimization problems. The main idea is to combine two stochastic estimators to create a new hybrid one. We first introduce our hybrid estimator and then investigate its fundamental properties to form a foundational theory for algorithmic development. Next, we apply our theory to develop several variants of stochastic gradient methods to solve both expectation and finite-sum composite optimization problems. Our first algorithm can be viewed as a variant of proximal stochastic gradient methods with a single-loop, but can achieve $\mathcal{O}(\sigma3\varepsilon{-1} + \sigma \varepsilon{-3})$-oracle complexity bound, matching the best-known ones from state-of-the-art double-loop algorithms in the literature, where $\sigma > 0$ is the variance and $\varepsilon$ is a desired accuracy. Then, we consider two different variants of our method: adaptive step-size and restarting schemes that have similar theoretical guarantees as in our first algorithm. We also study two mini-batch variants of the proposed methods. In all cases, we achieve the best-known complexity bounds under standard assumptions. We test our methods on several numerical examples with real datasets and compare them with state-of-the-arts. Our numerical experiments show that the new methods are comparable and, in many cases, outperform their competitors.

Citations (42)

Summary

We haven't generated a summary for this paper yet.