Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax Problems (2006.15266v2)

Published 27 Jun 2020 in math.OC and stat.ML

Abstract: We develop a novel and single-loop variance-reduced algorithm to solve a class of stochastic nonconvex-convex minimax problems involving a nonconvex-linear objective function, which has various applications in different fields such as machine learning and robust optimization. This problem class has several computational challenges due to its nonsmoothness, nonconvexity, nonlinearity, and non-separability of the objective functions. Our approach relies on a new combination of recent ideas, including smoothing and hybrid biased variance-reduced techniques. Our algorithm and its variants can achieve $\mathcal{O}(T{-2/3})$-convergence rate and the best known oracle complexity under standard assumptions, where $T$ is the iteration counter. They have several computational advantages compared to existing methods such as simple to implement and less parameter tuning requirements. They can also work with both single sample or mini-batch on derivative estimators, and with constant or diminishing step-sizes. We demonstrate the benefits of our algorithms over existing methods through two numerical examples, including a nonsmooth and nonconvex-non-strongly concave minimax model.

Citations (12)

Summary

We haven't generated a summary for this paper yet.