Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recommending Related Tables (1907.03595v2)

Published 8 Jul 2019 in cs.IR

Abstract: Tables are an extremely powerful visual and interactive tool for structuring and manipulating data, making spreadsheet programs one of the most popular computer applications. In this paper we introduce and address the task of recommending related tables: given an input table, identifying and returning a ranked list of relevant tables. One of the many possible application scenarios for this task is to provide users of a spreadsheet program proactively with recommendations for related structured content on the Web. At its core, the related table recommendation task boils down to computing the similarity between a pair of tables. We develop a theoretically sound framework for performing table matching. Our approach hinges on the idea of representing table elements in multiple semantic spaces, and then combining element-level similarities using a discriminative learning model. Using a purpose-built test collection from Wikipedia tables, we demonstrate that the proposed approach delivers state-of-the-art performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shuo Zhang (256 papers)
  2. Krisztian Balog (76 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.