Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TableNet: An Approach for Determining Fine-grained Relations for Wikipedia Tables (1902.01740v1)

Published 5 Feb 2019 in cs.DB

Abstract: Wikipedia tables represent an important resource, where information is organized w.r.t table schemas consisting of columns. In turn each column, may contain instance values that point to other Wikipedia articles or primitive values (e.g. numbers, strings etc.). In this work, we focus on the problem of interlinking Wikipedia tables for two types of table relations: equivalent and subPartOf. Through such relations, we can further harness semantically related information by accessing related tables or facts therein. Determining the relation type of a table pair is not trivial, as it is dependent on the schemas, the values therein, and the semantic overlap of the cell values in the corresponding tables. We propose TableNet, an approach that constructs a knowledge graph of interlinked tables with subPartOf and equivalent relations. TableNet consists of two main steps: (i) for any source table we provide an efficient algorithm to find all candidate related tables with high coverage, and (ii) a neural based approach, which takes into account the table schemas, and the corresponding table data, we determine with high accuracy the table relation for a table pair. We perform an extensive experimental evaluation on the entire Wikipedia with more than 3.2 million tables. We show that with more than 88\% we retain relevant candidate tables pairs for alignment. Consequentially, with an accuracy of 90% we are able to align tables with subPartOf or equivalent relations. Comparisons with existing competitors show that TableNet has superior performance in terms of coverage and alignment accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Besnik Fetahu (27 papers)
  2. Avishek Anand (81 papers)
  3. Maria Koutraki (2 papers)
Citations (35)

Summary

We haven't generated a summary for this paper yet.