Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preserving physically important variables in optimal event selections: A case study in Higgs physics (1907.02098v2)

Published 3 Jul 2019 in hep-ph and cs.LG

Abstract: Analyses of collider data, often assisted by modern Machine Learning methods, condense a number of observables into a few powerful discriminants for the separation of the targeted signal process from the contributing backgrounds. These discriminants are highly correlated with important physical observables; using them in the event selection thus leads to the distortion of physically relevant distributions. We present a novel method based on a differentiable estimate of mutual information, a measure of non-linear dependency between variables, to construct a discriminant that is statistically independent of a number of selected observables, and so manages to preserve their distributions in the event selection. Our strategy is evaluated in a realistic setting, the analysis of the Standard Model Higgs boson decaying into a pair of bottom quarks. Using the distribution of the invariant mass of the di-b-jet system to extract the Higgs boson signal strength, our method achieves state-of-the-art performance compared to other decorrelation techniques, while significantly improving the sensitivity of a similar, cut-based, analysis published by ATLAS.

Citations (8)

Summary

We haven't generated a summary for this paper yet.