Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraining the Higgs Potential with Neural Simulation-based Inference for Di-Higgs Production (2405.15847v2)

Published 24 May 2024 in hep-ph and stat.ML

Abstract: Determining the form of the Higgs potential is one of the most exciting challenges of modern particle physics. Higgs pair production directly probes the Higgs self-coupling and should be observed in the near future at the High-Luminosity LHC. We explore how to improve the sensitivity to physics beyond the Standard Model through per-event kinematics for di-Higgs events. In particular, we employ machine learning through simulation-based inference to estimate per-event likelihood ratios and gauge potential sensitivity gains from including this kinematic information. In terms of the Standard Model Effective Field Theory, we find that adding a limited number of observables can help to remove degeneracies in Wilson coefficient likelihoods and significantly improve the experimental sensitivity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. G. Aad et al. (ATLAS), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv:1207.7214 [hep-ex] .
  2. S. Chatrchyan et al. (CMS), Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv:1207.7235 [hep-ex] .
  3. G. Isidori, G. Ridolfi, and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609, 387 (2001), arXiv:hep-ph/0104016 .
  4. C. Grojean, G. Servant, and J. D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71, 036001 (2005), arXiv:hep-ph/0407019 .
  5. R. L. Workman and Others (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
  6. U. Baur, T. Plehn, and D. L. Rainwater, Measuring the Higgs Boson Self Coupling at the LHC and Finite Top Mass Matrix Elements, Phys. Rev. Lett. 89, 151801 (2002), arXiv:hep-ph/0206024 .
  7. U. Baur, T. Plehn, and D. L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69, 053004 (2004), arXiv:hep-ph/0310056 .
  8. I. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical design report 10/2020, 10.23731/CYRM-2020-0010 (2020).
  9. A. Faus-Golfe et al., Accelerators for Electroweak Physics and Higgs Boson Studies,   (2022), arXiv:2209.05827 [physics.acc-ph] .
  10. A. Abada et al. (FCC), FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79, 474 (2019a).
  11. W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268, 621 (1986).
  12. I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, Phys. Rept. 793, 1 (2019), arXiv:1706.08945 [hep-ph] .
  13. F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8, 4937 (1993), arXiv:hep-ph/9301281 .
  14. S. Chang and M. A. Luty, The Higgs Trilinear Coupling and the Scale of New Physics, JHEP 03, 140, arXiv:1902.05556 [hep-ph] .
  15. M. L. Mangano, G. Ortona, and M. Selvaggi, Measuring the Higgs self-coupling via Higgs-pair production at a 100 TeV p-p collider, Eur. Phys. J. C 80, 1030 (2020), arXiv:2004.03505 [hep-ph] .
  16. K. Chai, J.-H. Yu, and H. Zhang, Investigating Higgs self-interaction through di-Higgs plus jet production at a 100 TeV hadron collider, Phys. Rev. D 107, 055031 (2023), arXiv:2210.14929 [hep-ph] .
  17. A. Papaefstathiou and G. Tetlalmatzi-Xolocotzi, Multi-Higgs Boson Production with Anomalous Interactions at Current and Future Proton Colliders,   (2023), arXiv:2312.13562 [hep-ph] .
  18. A. Tumasyan et al. (CMS), A portrait of the Higgs boson by the CMS experiment ten years after the discovery., Nature 607, 60 (2022), arXiv:2207.00043 [hep-ex] .
  19. G. Aad et al. (ATLAS), Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at s=13 TeV, Phys. Lett. B 843, 137745 (2023), arXiv:2211.01216 [hep-ex] .
  20. F. Kling, T. Plehn, and P. Schichtel, Maximizing the significance in Higgs boson pair analyses, Phys. Rev. D 95, 035026 (2017), arXiv:1607.07441 [hep-ph] .
  21. K. Cranmer, J. Brehme, and G. Louppe, The frontier of simulation-based inference (2020).
  22. M. Capozi and G. Heinrich, Exploring anomalous couplings in Higgs boson pair production through shape analysis, JHEP 03, 091, arXiv:1908.08923 [hep-ph] .
  23. L. Alasfar et al., Effective Field Theory descriptions of Higgs boson pair production,   (2023), arXiv:2304.01968 [hep-ph] .
  24. C. W. Murphy, Dimension-8 operators in the Standard Model Eective Field Theory, JHEP 10, 174, arXiv:2005.00059 [hep-ph] .
  25. T. Plehn, Lectures on LHC Physics (2015).
  26. U. Baur, T. Plehn, and D. L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis, Phys. Rev. D 68, 033001 (2003), arXiv:hep-ph/0304015 .
  27. M. J. Dolan, C. Englert, and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10, 112, arXiv:1206.5001 [hep-ph] .
  28. A. Abada et al. (FCC), FCC-hh: The Hadron Collider, Eur. Phys. J. Spec. Top. 228, 755 (2019b).
  29. S. Dawson, S. Dittmaier, and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58, 115012 (1998), arXiv:hep-ph/9805244 .
  30. F. Maltoni, E. Vryonidou, and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11, 079, arXiv:1408.6542 [hep-ph] .
  31. D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP 09, 053, arXiv:1505.07122 [hep-ph] .
  32. J. Grigo, J. Hoff, and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO and NNLO, Nucl. Phys. B 900, 412 (2015), arXiv:1508.00909 [hep-ph] .
  33. D. de Florian et al. (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector 2/2017, 10.23731/CYRM-2017-002 (2016b), arXiv:1610.07922 [hep-ph] .
  34. C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, SciPost Phys. Codeb. 2022, 8 (2022), arXiv:2203.11601 [hep-ph] .
  35. M. Cacciari, G. P. Salam, and G. Soyez, The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm, JHEP 04, 063, arXiv:0802.1189 [hep-ph] .
  36. M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72, 1896 (2012), arXiv:1111.6097 [hep-ph] .
  37. Z. Bern et al. (NLO Multileg Working Group), The NLO multileg working group: Summary report, in 5th Les Houches Workshop on Physics at TeV Colliders (2008) pp. 1–120, arXiv:0803.0494 [hep-ph] .
  38. A. M. Sirunyan et al. (CMS), Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV, JHEP 03, 257, arXiv:2011.12373 [hep-ex] .
  39. Z. Jia (ATLAS), Studies of new Higgs boson interactions through nonresonant H⁢H𝐻𝐻HHitalic_H italic_H production in the b⁢b¯⁢γ⁢γ𝑏¯𝑏𝛾𝛾b\bar{b}\gamma\gammaitalic_b over¯ start_ARG italic_b end_ARG italic_γ italic_γ final state in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector, PoS EPS-HEP2023, 422 (2024).
  40. L. Heinrich and M. Kagan, Differentiable Matrix Elements with MadJax, J. Phys. Conf. Ser. 2438, 012137 (2023), arXiv:2203.00057 [hep-ph] .
  41. B. Nachman and S. Prestel, Morphing parton showers with event derivatives,   (2022), arXiv:2208.02274 [hep-ph] .
  42. J. Neyman and E. S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Phil. Trans. R. Soc. Lond. A 231, 289 (1933).
  43. M. Sugiyama, T. Suzuki, and T. Kanamori, Density Ratio Estimation in Machine Learning (Cambridge University Press, 2012).
  44. K. Cranmer, J. Pavez, and G. Louppe, Approximating Likelihood Ratios with Calibrated Discriminative Classifiers (2015).
  45. S. Rizvi, M. Pettee, and B. Nachman, Learning likelihood ratios with neural network classifiers, JHEP 02, 136, arXiv:2305.10500 [hep-ph] .
  46. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017), arXiv:1412.6980 [cs.LG] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.