Constraining the Higgs Potential with Neural Simulation-based Inference for Di-Higgs Production (2405.15847v2)
Abstract: Determining the form of the Higgs potential is one of the most exciting challenges of modern particle physics. Higgs pair production directly probes the Higgs self-coupling and should be observed in the near future at the High-Luminosity LHC. We explore how to improve the sensitivity to physics beyond the Standard Model through per-event kinematics for di-Higgs events. In particular, we employ machine learning through simulation-based inference to estimate per-event likelihood ratios and gauge potential sensitivity gains from including this kinematic information. In terms of the Standard Model Effective Field Theory, we find that adding a limited number of observables can help to remove degeneracies in Wilson coefficient likelihoods and significantly improve the experimental sensitivity.
- G. Aad et al. (ATLAS), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv:1207.7214 [hep-ex] .
- S. Chatrchyan et al. (CMS), Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv:1207.7235 [hep-ex] .
- G. Isidori, G. Ridolfi, and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609, 387 (2001), arXiv:hep-ph/0104016 .
- C. Grojean, G. Servant, and J. D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71, 036001 (2005), arXiv:hep-ph/0407019 .
- R. L. Workman and Others (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
- U. Baur, T. Plehn, and D. L. Rainwater, Measuring the Higgs Boson Self Coupling at the LHC and Finite Top Mass Matrix Elements, Phys. Rev. Lett. 89, 151801 (2002), arXiv:hep-ph/0206024 .
- U. Baur, T. Plehn, and D. L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69, 053004 (2004), arXiv:hep-ph/0310056 .
- I. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical design report 10/2020, 10.23731/CYRM-2020-0010 (2020).
- A. Faus-Golfe et al., Accelerators for Electroweak Physics and Higgs Boson Studies, (2022), arXiv:2209.05827 [physics.acc-ph] .
- A. Abada et al. (FCC), FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79, 474 (2019a).
- W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268, 621 (1986).
- I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, Phys. Rept. 793, 1 (2019), arXiv:1706.08945 [hep-ph] .
- F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8, 4937 (1993), arXiv:hep-ph/9301281 .
- S. Chang and M. A. Luty, The Higgs Trilinear Coupling and the Scale of New Physics, JHEP 03, 140, arXiv:1902.05556 [hep-ph] .
- M. L. Mangano, G. Ortona, and M. Selvaggi, Measuring the Higgs self-coupling via Higgs-pair production at a 100 TeV p-p collider, Eur. Phys. J. C 80, 1030 (2020), arXiv:2004.03505 [hep-ph] .
- K. Chai, J.-H. Yu, and H. Zhang, Investigating Higgs self-interaction through di-Higgs plus jet production at a 100 TeV hadron collider, Phys. Rev. D 107, 055031 (2023), arXiv:2210.14929 [hep-ph] .
- A. Papaefstathiou and G. Tetlalmatzi-Xolocotzi, Multi-Higgs Boson Production with Anomalous Interactions at Current and Future Proton Colliders, (2023), arXiv:2312.13562 [hep-ph] .
- A. Tumasyan et al. (CMS), A portrait of the Higgs boson by the CMS experiment ten years after the discovery., Nature 607, 60 (2022), arXiv:2207.00043 [hep-ex] .
- G. Aad et al. (ATLAS), Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at s=13 TeV, Phys. Lett. B 843, 137745 (2023), arXiv:2211.01216 [hep-ex] .
- F. Kling, T. Plehn, and P. Schichtel, Maximizing the significance in Higgs boson pair analyses, Phys. Rev. D 95, 035026 (2017), arXiv:1607.07441 [hep-ph] .
- K. Cranmer, J. Brehme, and G. Louppe, The frontier of simulation-based inference (2020).
- M. Capozi and G. Heinrich, Exploring anomalous couplings in Higgs boson pair production through shape analysis, JHEP 03, 091, arXiv:1908.08923 [hep-ph] .
- L. Alasfar et al., Effective Field Theory descriptions of Higgs boson pair production, (2023), arXiv:2304.01968 [hep-ph] .
- C. W. Murphy, Dimension-8 operators in the Standard Model Eective Field Theory, JHEP 10, 174, arXiv:2005.00059 [hep-ph] .
- T. Plehn, Lectures on LHC Physics (2015).
- U. Baur, T. Plehn, and D. L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis, Phys. Rev. D 68, 033001 (2003), arXiv:hep-ph/0304015 .
- M. J. Dolan, C. Englert, and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10, 112, arXiv:1206.5001 [hep-ph] .
- A. Abada et al. (FCC), FCC-hh: The Hadron Collider, Eur. Phys. J. Spec. Top. 228, 755 (2019b).
- S. Dawson, S. Dittmaier, and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58, 115012 (1998), arXiv:hep-ph/9805244 .
- F. Maltoni, E. Vryonidou, and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11, 079, arXiv:1408.6542 [hep-ph] .
- D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP 09, 053, arXiv:1505.07122 [hep-ph] .
- J. Grigo, J. Hoff, and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO and NNLO, Nucl. Phys. B 900, 412 (2015), arXiv:1508.00909 [hep-ph] .
- D. de Florian et al. (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector 2/2017, 10.23731/CYRM-2017-002 (2016b), arXiv:1610.07922 [hep-ph] .
- C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, SciPost Phys. Codeb. 2022, 8 (2022), arXiv:2203.11601 [hep-ph] .
- M. Cacciari, G. P. Salam, and G. Soyez, The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm, JHEP 04, 063, arXiv:0802.1189 [hep-ph] .
- M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72, 1896 (2012), arXiv:1111.6097 [hep-ph] .
- Z. Bern et al. (NLO Multileg Working Group), The NLO multileg working group: Summary report, in 5th Les Houches Workshop on Physics at TeV Colliders (2008) pp. 1–120, arXiv:0803.0494 [hep-ph] .
- A. M. Sirunyan et al. (CMS), Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV, JHEP 03, 257, arXiv:2011.12373 [hep-ex] .
- Z. Jia (ATLAS), Studies of new Higgs boson interactions through nonresonant HH𝐻𝐻HHitalic_H italic_H production in the bb¯γγ𝑏¯𝑏𝛾𝛾b\bar{b}\gamma\gammaitalic_b over¯ start_ARG italic_b end_ARG italic_γ italic_γ final state in pp𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector, PoS EPS-HEP2023, 422 (2024).
- L. Heinrich and M. Kagan, Differentiable Matrix Elements with MadJax, J. Phys. Conf. Ser. 2438, 012137 (2023), arXiv:2203.00057 [hep-ph] .
- B. Nachman and S. Prestel, Morphing parton showers with event derivatives, (2022), arXiv:2208.02274 [hep-ph] .
- J. Neyman and E. S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Phil. Trans. R. Soc. Lond. A 231, 289 (1933).
- M. Sugiyama, T. Suzuki, and T. Kanamori, Density Ratio Estimation in Machine Learning (Cambridge University Press, 2012).
- K. Cranmer, J. Pavez, and G. Louppe, Approximating Likelihood Ratios with Calibrated Discriminative Classifiers (2015).
- S. Rizvi, M. Pettee, and B. Nachman, Learning likelihood ratios with neural network classifiers, JHEP 02, 136, arXiv:2305.10500 [hep-ph] .
- D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017), arXiv:1412.6980 [cs.LG] .