Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding the Global Optimum of a Class of Quartic Minimization Problem (2007.09630v3)

Published 19 Jul 2020 in math.NA and cs.NA

Abstract: We consider a special nonconvex quartic minimization problem over a single spherical constraint, which includes the discretized energy functional minimization problem of non-rotating Bose-Einstein condensates (BECs) as one of the important applications. Such a problem is studied by exploiting its characterization as a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv), which admits a unique nonnegative eigenvector, and this eigenvector is exactly the global minimizer to the quartic minimization. With these properties, any algorithm converging to the nonnegative stationary point of this optimization problem finds its global minimum, such as the regularized Newton (RN) method. In particular, we obtain the global convergence to global optimum of the inexact alternating direction method of multipliers (ADMM) for this problem. Numerical experiments for applications in non-rotating BEC validate our theories.

Summary

We haven't generated a summary for this paper yet.