Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Approximate matrix completion based on cavity method (1907.00138v1)

Published 29 Jun 2019 in math.NA, cond-mat.stat-mech, cs.LG, and cs.NA

Abstract: In order to solve large matrix completion problems with practical computational cost, an approximate approach based on matrix factorization has been widely used. Alternating least squares (ALS) and stochastic gradient descent (SGD) are two major algorithms to this end. In this study, we propose a new algorithm, namely cavity-based matrix factorization (CBMF) and approximate cavity-based matrix factorization (ACBMF), which are developed based on the cavity method from statistical mechanics. ALS yields solutions with less iterations when compared to those of SGD. This is because its update rules are described in a closed form although it entails higher computational cost. CBMF can also write its update rules in a closed form, and its computational cost is lower than that of ALS. ACBMF is proposed to compensate a disadvantage of CBMF in terms of relatively high memory cost. We experimentally illustrate that the proposed methods outperform the two existing algorithms in terms of convergence speed per iteration, and it can work under the condition where observed entries are relatively fewer. Additionally, in contrast to SGD, (A)CBMF does not require scheduling of the learning rate.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.