Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BMF: Block matrix approach to factorization of large scale data (1901.00444v2)

Published 2 Jan 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Matrix Factorization (MF) on large scale matrices is computationally as well as memory intensive task. Alternative convergence techniques are needed when the size of the input matrix is higher than the available memory on a Central Processing Unit (CPU) and Graphical Processing Unit (GPU). While alternating least squares (ALS) convergence on CPU could take forever, loading all the required matrices on to GPU memory may not be possible when the dimensions are significantly higher. Hence we introduce a novel technique that is based on considering the entire data into a block matrix and relies on factorization at a block level.

Citations (1)

Summary

We haven't generated a summary for this paper yet.