Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Logarithmic divergences: geometry and interpretation of curvature (1906.09103v1)

Published 17 Jun 2019 in math.DG, math.PR, math.ST, and stat.TH

Abstract: We study the logarithmic $L{(\alpha)}$-divergence which extrapolates the Bregman divergence and corresponds to solutions to novel optimal transport problems. We show that this logarithmic divergence is equivalent to a conformal transformation of the Bregman divergence, and, via an explicit affine immersion, is equivalent to Kurose's geometric divergence. In particular, the $L{(\alpha)}$-divergence is a canonical divergence of a statistical manifold with constant sectional curvature $-\alpha$. For such a manifold, we give a geometric interpretation of its sectional curvature in terms of how the divergence between a pair of primal and dual geodesics differ from the dually flat case. Further results can be found in our follow-up paper [27] which uncovers a novel relation between optimal transport and information geometry.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.