Learning Bilingual Word Embeddings Using Lexical Definitions (1906.08939v1)
Abstract: Bilingual word embeddings, which representlexicons of different languages in a shared em-bedding space, are essential for supporting se-mantic and knowledge transfers in a variety ofcross-lingual NLP tasks. Existing approachesto training bilingual word embeddings requireoften require pre-defined seed lexicons that areexpensive to obtain, or parallel sentences thatcomprise coarse and noisy alignment. In con-trast, we propose BilLex that leverages pub-licly available lexical definitions for bilingualword embedding learning. Without the needof predefined seed lexicons, BilLex comprisesa novel word pairing strategy to automati-cally identify and propagate the precise fine-grained word alignment from lexical defini-tions. We evaluate BilLex in word-level andsentence-level translation tasks, which seek tofind the cross-lingual counterparts of wordsand sentences respectively.BilLex signifi-cantly outperforms previous embedding meth-ods on both tasks.
- Weijia Shi (55 papers)
- Muhao Chen (159 papers)
- Yingtao Tian (32 papers)
- Kai-Wei Chang (292 papers)